Tetrahedron Letters No. 25, pp 2087 - 2088, 1975. Pergamon Press. Printed in Great Britain.

SELENIUM CATALYZED CARBONYLATION OF AMINES AND DISULFIDES. A NEW SYNTHESIS OF THIOCARBAMATES.

Paolo Koch

SNAMPROGETTI DIRIS, 20097 S.Donato Milanese, Italy.

(Received in UK 2 May 1975; accepted for publication 8 May 1975) Despite the availability of several methods for the preparation of thiocarbamic-acid-S-esters, the most widely used routes to these compounds are the reactions of isocyanates with thicls and of chlorothiocarbonates with amines⁽¹⁾.

It has now been found that a more direct preparation of thiocarbamates is effected by combining primary alighatic amines and disulfides in equimolecular ratio with carbon monoxide in the presence of selenium as a catalyst. $RNH_2 + R'SSR' + CO \longrightarrow RNH-CO-SR' + HSR'$ (1) The conditions required are mild and aromatic amines can be used provided that triethylamine is added as a co-catalyst.

In a typical reaction iso-propylamine (0.01 mole), diphenyldisulfide (0.01 mole) and selenium $(4x10^{-4} \text{ g-atom})$ were charged in the autoclave together with 20 ml of acetonitrile. Carbon monoxide was compressed at 4 atm and the contents of the autoclave were stirred and heated at 20°C. After distillation of the solvent the crude solid was dissolved in light petroleum, the solution was filtered in order to recover selenium and the by-product N,N'-di-iso-propylurea (0.1 g). Cooling the solution gave 1.65 g of isopropylthiocarbamic-acid-S-phenyl-ester identical to an authentic specimen (85% yield). The aromatic amines reported in the table were carbonylated at 60°C by an almost identical procedure in the presence of tiethylamine $(5x10^{-3} \text{ mole})$ as a co-catalyst. The crude solid was dissolved in benzene, and light petroleum added. On cooling thiocarbanilic-acid-S-ester separated.

These selenium-catalyzed systems are similar to those previously reported for the carbonylation of aliphatic⁽²⁾ and aromatic amines⁽³⁾ to ureas. Therefore a selenocarbamate intermediate (RNH-CO-Se⁻) may be similarly involved. In support to this hypothesis the reaction of a mixture of isopropylamine (0.02 mole) and selenium (0.01 g-atom) in acetonitrile (40 ml)

2087

with carbon monoxide (4 atm) gives the salt RNH-CO-Se⁻ RNH⁺₃ (R=iso-C₃H₇); on addition of diphenyldisulfide (0.01 mole) in an inert atmosphere selenium is precipitated and iso-propylthiocarbamic-acid-<u>S</u>-phenyl-ester formed: RNH-CO-Se⁻ + C₅H₅SSC₆H₅ \longrightarrow RNH-CO-SC₆H₅ + HSC₆H₅ + Se (70% yield) (2)

While detailed information concerning this reaction of selenocarbamate anion with the disulfide is lacking to date, an ionic cleavage of sulfursulfur bond⁽⁴⁾ by attack of the nucleophilic selenocarbamate may be suggested.

TABLE RNH ₂ (R =) R'SSR' (R' =) temp.(°C) t_1 (hours) ^(a) RNH-CO-SR'(yield%) ^(b)				
$RNH_2 (R =)$	$R^{\dagger}SSR^{\dagger}(R^{\dagger}=)$	temp.(°C)	t ₁ (hours) ^(a)	RNH-CO-SR'(yield%) ^(b)
1so-C3H7	^с 6 ^н 5	20	very fast	85
tert-C4H9	C ₆ H ₅	20	very fast	84
^C 6 ^H 11	C6 ^H 5	20	very fast	87
n-C4H9	CH	-5 ^(c)	3	73
1so-C ₃ H ₇	сн	-5 ^(c')	3	77
p-CH3C6H4	iso-C4H9	60	0.5	92
0-CH3C6H4	iso-C4H9	60	3.5	92
C ₆ H ₅	iso-C4H9	60	1	87
C ₆ H ₅	sec-CAH9	60	2.5	83
C ₆ H ₅	tert-C4H9	60	_(a)	0
C ₆ H ₅	C ₆ H ₅	60	1.2	50
p-CIC ₆ H ₄	180-C4H9	60	1.5	90
p-NO2C6H4	iso-C4H9	60	_(d)	0

(a)_{Half} reaction time. ^(b)Yield at the complete reaction. ^(c)If the reaction is carried out at 20°C N,N'-di-n-butylurea, and ^(c')N,N'-di-iso-propylurea are the main products. ^(d)Aromatic amine and disulfide were recovered unchanged after ten hours.

REFERENCES

(1) Methoden der Organische Chemie - Schwefel, Selen and Tellur Verbindungen, Band IX, E.Mäller Ed., Stuttgart 1955, p.834.

(2) N.Sonoda, T.Yasuhara, K.Kondo, T.Ikeda and S.Tsutsumi, <u>J.Am.Chem.Soc</u>., <u>75</u>, 3425 (1971).

(3) K.Kondo, N.Sonoda and S.Tsutsumi, Chem.Com., 307 (1972).

(4) The Chemistry of Organic Sulfur Compounds, Vol.1, N.Karasch and C.Y.Meyers Ed., Pergamon Press, Oxford 1961, p.83.

<u>Acknowledgment-I</u> thank Mr.B.Anfossi for assistance during the course of this work.